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Theorem 1 1.

ABSTRACT

In this paper we prove:

If n,m -+-00 and log2m = o(n) then d(n,m)s(t + o(l))n (i)

Corollary 1 2.

1
n/32 S d(n, n) S (2 + 0(1)) . n

(The constant 1/32 can be somewhat improved).

Qoro)]ary 1 3.

If m /n 2
-+ 00 and (log2m )In -+- 0 then,

Put d = d( n, m) , then for every integer 1 S h S nm (iii)

(8 rn;: kn+mJd+h+m ~ 2nm

We specify two special cases separately.

d(n, m) = (t + 0(1)) . n .

Corollary 1.2 solves a problem of Paturi and Simon [PS], who

showed that llogzn j ::; d(n, n) ::; n-l and asked if one can

prove a superlogarithmic lower bound for d(n, n). As shown in
Section 5, Corollary 1.2 also enables us to improve the lower
bound of [PS] for the maximal possible unbounded-error
probabilistic communication complexity of a Boolean function of
2p bits from O(log p) to p-5. (This complexity is always at most
p ).

Yao [Ya] introduced a model of bounded-error probabilistic
communication complexity and showed that there are functions
of 2p Boolean variables whose complexity is O( log p). This was
improved by Vazirani [V] to 0 (p flog p). Our p -5 lower bound
applies to this model, as well, and improves the bound to O(p).
Moreover, our proof shows that the (bounded or unbounded)
probabilistic communication complexity of almost every Boolean
function on 2p variables is between p -5 and p. This answers a
question raised in [Ya]. A slightly weaker result for the bounded
error case has been recently obtained also by Chor and Goldreich
[CG], who showed that almost every Boolean function of 2p

variables has an O(p) bounded error probabilistic communication
complexity.

Our paper is organized as follows. In Sections 2 and 3 we show
how to use the moment curve together with some simple
probabilistic arguments to prove the upper bound part of
Theorem 1.1. In Section 4 we combine some recent results of
Goodman and Pollack [GP2] with some of the results of [Al] and
simple counting arguments to prove the lower bounds. The
results of [GP2] and [Al] both follow from a theorem of Milnor
from real algebraic geometry. In Section 5 we discuss the

application to probabilistic communication complexity. The final
Section 6 contains some concluding remarks and related results.

(ii)Put d = d(n, 1n) then

1. INTRODIJCTION

Let N = {I, 2, ... ,n} and let F = {F I , F2 , ... ,Fm } be a
falnily of m subsets of N. We say that F is realizable in the d­
dilnensional Euclidean space R d if there exist n points
PI' P 2 , ..• ,Pn and m hyperplanes H}, H 2 , .•• ,Hm such that
P j lies in the positive side of Hi if and only if j E Fi . Define
d(f ), the dz'rnension of F , to be the minimal dimension d such
that F is realizable in Rd. Also put d(n, m) = max{d(F ) : F is
a family of m subsets of N}. Clearly d(n, m) S n-1 (simply
take n points in general position in Rn).

It is also easy to see that

d(n ,m) ~ llogzm1·
Indeed, if X ~ N is separated in all 2Jxl-I possibilities by the
subsets of F (i.e., for every partition of X = Xl U X 2 there is an
F E F such that F n X = Xl or F n X = X 2), then, by Radon's
theorem (cf. e.g. [Gr, p. 16] d(F ) 2 Ix-I-1.

n3+0(n~ + H('!)·n.m+m
2 n 2:: 2n 'm ,

where H(x) = -xlog2 x-(l-x) log2 (I-X) is the binary entropy
function.

This implies that the probabilistic unbounded-error 2-way
complexity of almost all the Boolean functions of 2p variables is
between p-5 and p, thus solving a problem of Yao and another
problem of Paturi and Simon.

The proof of (1) combines some known geometric facts with
certain probabilistic arguments and a theorem of Milnor from
real algebraic geometry.

Let d = d(n) be the minimum d such that for every sequence of
n subsets F I , F2 , .•. , Fn of {I, 2, ... , n} there exist n points
PI' P2 , ... , Pn and n hyperplanes HI' H 2 , ... , Hn in R d such
that Pj lies in the positive side of Hi iff j E Fi . Then

1
n/32 S d(n) S ("2 + 0(1)) . n . (1)
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Lemma 2 1.

Clearly

hyperplanethebe

d

L: ak . Xk = -ao}·

k==l

Yi ' ... ,Yj are the only sign changes of the polynomial Pi( t).
1 , d

Since Pi(t) = L: aktk, the point (t, t2 , ... ,td
) lies on the

k==O
positive side of Hi if and only if Pi( t) > O. Hence the hyperplane
Hi separates the points P l1 P 2 , ..• ,Pn according to the sign

pattern of (mij) j:1 and after adjusting the sign of the Hi-s, if

necessary, we conclude that the Hi-s and the Pj-s form a
realization of F , as desired.

3. THE lWPER B01JND

o

4. THE LOWER BOUNDS

We first note that if a family F is realizable in R d by the points
PI' ... , Pn, and the hyperplanes HI' ... ,Hm then it is also
realizable by PI' ... ,Pn and the same Hi-s, whenever P j is
sufficiently close to Pj • Hence we can always assume that the
points Pj of a realization are in general position in Rd. Let us
call two ordered sets P l1 P 2, ... ,Pn and Q1' Q2' ... , Qn of
points in general position in R d equivalent if they can be
partitioned by hyperplanes in precisely the same way, i.e., there
exists a hyperplane H separating Pj l' ... , Pi, from the rest of

the Pj-s if and only if there exists a hyperplane H' separating
Qj l' ,Qj, from the rest of the Qj-s. For a sequence

(Po, , P d ) of points in R d with Pi = (XiI , ... , Xid),we say
that it has a posit£ve orientation, written PO"'Pd > 0, if

det (Xij) > 0

where Xio = 1 for each i. Po ... Pd < 0 is defined similarly. The
order type of an ordered set of points P l1 P 2 , •.. , Pn ( in general
position) in R d is t~e set of all d+l-tuple&, i1 < i2 < ...< id+1

such that Ph'" Pjd +
1
> O. It is easy and well known (see e.g.

[GPt]) that if PI'" Pn and QI'" Qn have the same order type
then they are equivalent. Very recently, Goodman and Pollack

Let f > 0 be arbitrarily small and let 8 = 8(f) be defined by
Lemma 2.1. We will show that if m < (1 + 8)n then

d(n, m) ~ (t + f)n. Note that this proves part (i) of Theorem

1.1. Suppose m < (1 + 8)n and let F = {F l1 F2, ... , Fm } be a
family of subsets of N. By Lemma 2.2 we can assume that each

row of the incidence matrix of F has at most (1- + f) . n sign
2

changes. Let d = l(t + f) . n j. We will show, using the well-

known moment curve (cf. e.g. [Gr, pp. 61-63], that F is realizable
in Rd. Let t1 < t2 < ... < tn be real numbers and put
Pi = (ti , tl, ... ,tl)· These will be the points of our realization.
Consider the i th row of the incidence matrix of F . Suppose that
the sign changes in this row appear after positions
j1 < i2 < ... < jr' Then r ~ d. Choose real numbers Yjk

r

satisfying til. < Yil. < til. and consider the polynomial Pi( t) = 1r
iii iii iii +1 k==l

(t-Yjk)' Since Pi( t) has degree at most d, we can write
d

Pi( t) = L: ak t k
. Let

k-o

Note that the bound .(1- + f) . n cannot be substantially
2

improved even for m = n. Indeed, if M is an n by n Hadamard
matrix then the total number of sign changes in its permuted

rows is precisely..!!:. (n-1). Hence under any permutation at least
2

one row has at least (n-l)/2 sign changes.

Remark 23.

2 [k~1)[n-;-1 )

[~)

Pmof:

Consider a random permutation 1r of the columns of M. Call a
permuted row bad if the number,' of sign changes in it is

> (t + f)' n. By Lemma 2~1 the, :pr?babilitythat each ~xed

row is bad is, < Jl + 8)-n. Hence, the 'expected, number of bad
rows is smaller than m(1 + 8)-n < 1, thus the desired
permutation exists.

Suppose now that F = {F1, F2, ... , Fm } is a family of subsets
of N = {I, 2, ... ,n}.Let M = (mii) be the incidence matrix of
F defined as follows; it is an m by n matrix where mii = +1 if
j E Fi and mii = -1 if j r/:. Fr·

Lemma 22.

Let f and 8 be as in Lemma 2.1 and suppose m < (1 + 8)n. Then
there is a permutation of the columns of M such that the number of

sign changes in each row is ~ (t +, f) . n.

Pmof.

For every f > 0 there exists a 8 = 8(f) > 0 such that if 1r t's a
random permutation then

- 1Pr(u(1r( a)) > (2 + f)n) < (1 + 8)-n .

2. TWO PROBABILISTIC LEMMAS

One can easily check that for fixed nand s the right hand side is

maximized for k = n/2J and then it is still bounded by

(H(l. + f)-I)' n
~ 2 2 , where H(x) = -xlog x-(l-x) log(l-x) is the

- 1binary entropy function. Since Pr(u(1r( a)) > (- + f)n) =
2

- 1L:{Pr{u{1r{ a)) = t : t > (2 + f)n)} the desired result follows.

Suppose that a has k plus l's and n-k minus l's and fix t,

t > (1- + f)n. Let us compute the number of permutations
2

p E Sn with u{p( a)) = t. To define such a p we have to choose
the order among the k plus l's and among the -l's (altogether
k!(n-k) ! choices), then to decide if thy fir~t rosi~on is a plus or

a minus, and finally to determine the It /21, t/21 cutting points

(after which the sign changes take place). For definiteness we
consider the case t = 2s, (the case t = 2s + 1 can be bounded
similarI)':). In this case the cutting points can be chosen in

[k~1) [n-;-1)ways, and hence

k! (n-k)!2 [k~1 J(n-;-1 )
Pr{u{1r{a))=t) = -----n-!----

Let a = (aI' a2' ... , an) be a sequence, where ai E {1,-9. Let

u(!:) denote the number of sign changes in a, i.e.

u(a) = Hi : 1 ~ i ~ n-1 and ai ¢ ai+1} I· By a
random permutation we mean a random variable 1r such that
Pr(1r = p) = l/n! for all p E Sn, the symmetric group on
N = {I, 2, ... , n}. For p E Sn put

p( a) = (a p(l)' ap(2)' ... , ap(n))'
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with dn + (d + 1) m variables. The assertion of part (iii) of
Theorem 1.1 now follows from Lemma 4.3

[log d(F )1~ 0, ~ [log(d(F))1+ 1 0

Note that F is a family of n subsets of N and that, conversely,
for each such family G there is a Boolean f such that F (f) = G.
Hence, combining this theorem with Corollary 1.2 we obtain:

o

Corollary 1.2 follows from part (i) of Theorem 1.1 and part (iii)
with h = 2d . n, m = n. Corollary 1.3 follows from parts (i) and
(ii) of Theorem 1.1.

5. PROBABU,JSTIC COMMlJNICATION COMPLEXITY

The model of [PS] is similar to that of [Ya] , and considers the
following problem. Two processors Po and PI wish to compute a
Boolean function f: {O, I}P X {O, I}P --+{O, I} of two
arguments, each consisting of p bits. The first argument, Xa, is
know only to Po and the second, Xl1. only to Pl' In order to
compute f, Pa and PI communicate by sending each other in
turns sequences of bits according to some (probabilistic) protocol
1/;. Both processors have unlimited local computing power and
can realize an arbitrary probability distribution over the set of
messages they transmit. The last message is always sent by PI
and is the output produced. We say that the protocol 1/; outputs
bit b if the probability that their last produced bit is b is greater
than 1/2. The protocol computes f if for every Xc, Xl it outputs b
if and only if f (Xa, Xl) = b. The communication complexity 0t/J of
1/; is the maximum number of bits transmitted by Pa and PI
during the protocol. The unbounded-error probabz'listic

communication complex£ty 0, of I is min{ Ot/J : 'f/; computes I},
Le., the complexity of the most efficient protocol to compute f. It
is shown in [PS] that the power of this unrestricted probabilistic
model is considerable. E.g., the unbounded error probabilistic
communication complexities of the functions I( x, '!I) = (x = y),
lex, y) = (x ~ y) and G(x, y) = (x ~y) are all shown to be ~ 2.
On the other hand, it is shown that for some I-s, 0, = O(log p).
Our results imply that for some I-s p-5 ~ 0, (~ p). This
follows immediately from Corollary 1.2 and the following result of
[PS].

Tb eorem 5 1. [PS]

Let f : {O, I}P X {O, I}P --+ {O, I} be a Boolean function and let
M = (mXo X1)X

o
Xl E {a, I}P be Us matrix. Put n = 2P and let N be

the set 01 all binary vectors of length p. For every Xa E N put
Fxo = {Xl: f(Xa, Xl) = I}, and put F = F (f) = {Fxo : X a EN}.

Then

o

havewed = d(n, m),Consequently, for

n3+0(n~+m+H(..!].nm
2 n > 2nm , since every ordered family of m
subsets of N is reali;;'ble in Rd. This proves part (ii) of Theorem
1.1.

We can now prove part (ii) of Theorem 1.1. By Lemma 4.2, devery
H(-)'n

given point set of n points in R d realizes at most (2' 2 n )m
ordered sequences of m subsets of N = {I, 2, ... , n}. Thus, by
Lelnma 4.1, the total number of sequences of m subsets off that
can be realized by n points in R d is at most 2n +O(n~ .

m+H(..!)nm
2 n

To prove part (iii) of Theorem 1.1 we need another result from
[AI]. Let PI = PI(XI, X2, ... ,Xl), P 2 = P 2(Xl1 X2' ... , Xl)
, ... , Pm = Pm(Xl1 X2, ... , Xl) be real polynomials. For c =
(c u C2"'" cn) ERn and 1 ~ j ~ m, let Pj(c) denote
Pi {CI, C2, ... ,cn )· Assume Pie c) ~ ° for all 1 ~ j ~ m. The
sign-pattern of the Pi-s at c is the m-tuple
(tl1 t2' ... , tm) E {-I, I}m, where f.j = sign Pi(c). The total
number of sign patterns as c ranges over all points of Rn for
which Pi ( c) ~ ° for all 1 ~ j ~ m, denoted by
s (P 1, P 2, ... , Pm), is clearly at most 2m. The following result
is an easy modification of Theorem 2.2 of [Al], and can be
derived, as in [Al], from the theorems of Milnor [Mi] and Thorn
[Th].

[GP2] have found a clever (and simple) way to apply a result of
Milnor [Mi] from real algebraic geometry in order to obtain an
asymptotically best possible upper bound for the number of order
types (and hence for the number of equivalence classes) of n
labeled points in Rd. Here we need an easy modification of their
result, proved in IAl).

Lemma 4 1 ([AI])

For every d, n the number of equivalence classes of n labeled points
in R d is at most 2n3+0(n~.

Another known result we will need is the following (see, e.g. [Ha]
or [ZaD.

Lemma 4 2 ([Ha, [ZaD

The number of ways to partition n points in R d into two d£sjoint
subsets separated by a hyperplane is at most

dt (nil) ( ~ zHl-;lon) 0

i==O

Lemma 43 Theorem 52

6. CONCLIJDING REMARKS

1. The s£gn-pattern of an m by n matrix A with real entries
(aijh::Si~m,l::Sj::Sn is an m by n matrix ZeAl = (Xii) of I-s and
-I-s where zii = sign aij' For an m by n matrix Z of 1,-1
entries, let r(Z) be the minimum possible rank of a matrix A
such that Z(A) = Z. Define r(n,m) = Max{r(Z) : Z is an
m by n matrix over {I,-I}}. One can easily check that

d(n, m) ~ r(n, m) ~ den, m) + 1 .

Thus our results imply, e.g., that

There are functions I : {O, I}P X {O, I}P --+ {O, I} such that

0, ~ p-5 .

This settles the problem raised in [PS]. Notice that the proof
actually gives that for almost all functions
f : {O, I}P X {O, I}P --+ {O, I} 0, ~ p-5. (Obviously, for each
such J, 0, ~ p). T~is answers a problem raised in [Ya].

d

'!Iio + ~ xir Yir < ° if j rt Fi . Thus the total number of
r-l

sequences of m subsets of N that are realizable in Rd is bounded
by the number of sign patterns of n . m quadratic polynomials

We can now prove part (iii) of Theorem 1.1. Suppose
F = (F I1 F2 , ••• ,Fm ) is a sequence of m subsets of
N = {I, 2, ... , n} that is realizable in Rd. Then we can
associate d real variables Xii' Xj2' ... , Xjd to each 1 ~ j ~ n,
and d + 1 real variables ~'o, Yil' Yi2, ... ,'!lid for each

1 ~; i ~ m such that '!Iio + ~ Xjr Yir > ° if j E Fi and
r-l

Let P I1 P 2, ... ,Pm be as above and let di = deg Pj (~ 1) be
the degree of Pi' 1 ~ j ~ m. Put J = {I, 2, ... , m} and let
J = J I U J2 U...U Jh. be a partition of J into h pairwise disjoint
parts. Define k = 2 max (:E di ). Then

1::S i::S II. j E Ji

s(P l1 P2 , .•. ,Pm) ~ k . (2k_l)l+h.-1 . 0
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n/32 ~ r(n, n) ~ (1+0(1)) ~ .

2. The method of proving the lower bound can be easily
extended to the case of realizing the family of sets by points
and hypersurfaces defined by polynomials of given degrees.
We omit the details.

3. There are certain applications of our results to problems of
embedding bipartite graphs on the unit sphere. These will
appear in the full version of the paper.

4. It would be nice to determine more precisely the asymptotic
behavior of d(n, n). It seems reasonable that

d(n, n) = (1+0(1)) . ..!!. .
2
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